特定中间件 | Middleware 中间件 | 产品经理学Langchian | 第21篇
Provider-specific中间件通常是针对特定供应商的API特性开发的,比如内容审核、缓存机制、特定格式支持等。这些中间件虽然不能跨供应商使用,但在特定供应商的场景下,能提供更强大的功能和更好的性能。
Provider-specific中间件通常是针对特定供应商的API特性开发的,比如内容审核、缓存机制、特定格式支持等。这些中间件虽然不能跨供应商使用,但在特定供应商的场景下,能提供更强大的功能和更好的性能。
File search中间件为AI智能体提供Glob和Grep两种文件搜索工具,支持按文件名模式查找文件和按内容正则表达式搜索,适用于代码探索、文件发现、内容分析等场景。
Shell tool中间件为AI智能体提供持久化的Shell会话,允许AI智能体执行系统命令、进行文件系统操作、运行脚本等。但同时,这也带来了安全风险,必须根据部署环境选择适当的安全策略。
Context editing中间件可以在达到token限制时,自动清理较旧的工具调用输出,保留最近的关键工具结果,确保长对话和多工具调用场景下上下文窗口可控,同时降低token消耗。
LLM tool emulator中间件可以在测试和开发阶段,使用LLM生成工具执行结果,替代真实工具调用,避免执行真实工具带来的成本、依赖和风险。这样,开发者就可以在没有真实工具的情况下,快速测试AI智能体的行为和工作流。
Tool retry中间件会在工具调用失败时,使用指数退避策略自动重试,处理临时性错误,提升AI智能体的可靠性和容错能力。这样,即使遇到网络波动、API限流等临时问题,也能自动恢复,用户几乎感觉不到。
LLM tool selector中间件思路是:在主模型调用前,先用一个轻量级的模型(比如GPT-4o-mini)分析当前查询,智能选择相关的工具,过滤掉无关的工具。这样,主模型只需要关注相关的工具,既能降低token消耗,又能提升选择的准确性。
To-do list中间件为AI智能体提供任务规划与跟踪能力,让AI智能体能够将复杂任务拆解成多个子任务,创建待办清单,并在执行过程中跟踪进度、调整计划。这样,AI智能体就能更有条理地处理复杂任务,用户也能清楚地了解任务进展。
在实际应用中,用户可能会在对话中输入各种敏感信息:邮箱地址、信用卡号、身份证号、手机号等。如果这些信息被直接发送给AI模型,或者记录在日志中,就可能存在泄露风险。
PII检测中间件就是为了解决这个问题而设计的。它可以在对话流程中自动检测敏感信息,并根据预设的策略进行处理:脱敏、掩码、哈希或直接阻断,确保敏感信息不会被泄露,同时满足合规要求。
模型回退的核心思想为主模型配置一个或多个备用模型,当主模型调用失败时,自动按顺序尝试备用模型,直到成功或所有模型都失败。这样就能保证服务的高可用性,同时还能实现成本优化和跨供应商的冗余保护。